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Some attention has been given in recent years to the problem of approxi
mation of real functions by monotone polynomials. In 1965, O. Shisha [5]
proved, among other things, the following result: If 1 :( k :( p and if a
real functionj(x), defined on [0, 1], satisfies

jlkl(X) ? 0, I j<P)(x)j :( M, for 0:( x :( 1,

then for every integer n(? p), there exists a real polynomial Qn(x) of degree
not exceeding n such that the inequalities

Q~k)(X) ? °
and

Ij(x) - Qix) I :( /:-k w (t<P),~) (1)

hold for all °:( x :( 1, where C depends only upon p and k and w(cp, h) is
the modulus of continuity of the function cp.

Roulier [4], and Lorentz and Zeller [2] continued the investigation in this
direction by relaxing, somewhat, the conditions onf, and by sharpening the
estimate (1), particularly for large n.

In this note, we deal briefly with a related problem, namely, that of uniform
approximation of a monotone continuous real-valued function by monotone
polynomials, which, in addition, agree with the function on a finite set of
points. Subsequently, we mention some applications.

The main theorems of this note are:

THEOREM A. Let °< Xl < .,. < Xn :( 1 and °< YI < ... < Yn be
fixed. There exists a polynomial Q(x) such that

(a) Q(O) = 0, Q(xi) = Yi, i = 1,2,... , n;

(b) Q'(x) ? O/or all real x.
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THEOREM B. Any strictly increasing continuous function defined on [0, 1],
can be uniformly approximated, as closely as desired, by a strictly increasing
polynomial and in such a way that the two functions agree on an arbitrarily given
finite set ofpoints.

In the proof of Theorem A, we shall need the following:

LEMMA 1. Let r, 0 < r < 1, be a rational number. The polynomial

where r = kim (k and m positive even integers), has the following properties:

(a) Pr(O) = Pr(1) = 0, Pr(r) = 1, Pix) ~ 0 for all real x.

(b) Pr(x) is strictly increasing in the interval [0, r] and strictly decreasing
in the interval [r, 1].

LEMMA 2. The polynomials

Qr..,(x) = C.,Prn(x) ,
where

n = 1,2,... ,

have the following properties:

(a) Qr..,(O) = Qr.n(1) = 0, Qr..,(r) = C." Qr...{x) ~ Ofor all real x.

(b) Qr..,(x) is strictly increasing in the interval [0, r] and strictly decreasing
in the interval [r, 1].

(c) J~ Qr...{x) dx = 1.

(d) lim..-.<» Qr..,(x) = 0 for x E [0, 1], x"* r.

Proof (a), (b), and (c) follow immediately by Lemma 1 and the definition
of en' To verify (d), we notice that by the binomial formula,

Therefore, c., < mn + 1 and, since 0 <; Pr(x) < 1 for x E [0,1], x"* r,
it follows that lim.,-.oo[cnPrn(x)] = O.

Remark. Actually, by performing a more rigorous calculation with the
help of Stirling's formula, one obtains the asymptotic estimate

Cn ,...., [21Tr(1 - r)]-1/2 (mn)1/2.
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Proof of Theorem A. Consider the polynomial

Q(x) = i IX; rQrj,n/t) dt,
j=l 0

(2)

where IXj , rj and nj are defined below and where Qri'n,Cx) is as in Lemma 2.
It is clear that Q(O) = 0 and that Q'(x) ~ 0 for all real x if alllXj are ~ O.
Set Y = (Yl , Y2 ,... , Yn), Cij = J~' Qr.,n.(t) dt, Uj = (Clj, C2j ,... , Cnj),, ,

i, j = 1,2,.", n.
To satisfy condition (a), we have to solve the system

n

L IXjUj = y.
;=1

(3)

The point Y E R n is a strictly increasing sequence of positive numbers and
for each j, the point U; E Rn is a strictly increasing sequence of positive
numbers bounded above by unity. It follows that the point Y lies interior
to the infinite "wedge" in Rn with vertex at the origin, spanned by the
vectors (0,0,.",0,1), (0,0, ...,0,1,1),.", (1,1,,,.,1), which we shall denote
by el , e2 ,,,., en, respectively. One deduces that the system (3) will have a
strictly positive solution (lXI' 1X2 ,,,., IXn) (that is, one with all IX; > 0) provided
the vectors U; are sufficiently close to the vectors e; , To this end, we choose
the i)-type polynomials Qrj,nj(X) in the following manner. For a
given j, 1 < j ~ n, and a given positive € < I, we select an rj such that
xn _; < rj < Xn-Hl and construct a polynomial Qr.,n.(x) such that, ,

for 0 < x < xn _; and for Xn-Hl ~ X ~ Xn •

It follows that

o < Cit < €

I - € < Cij < I

It is clear that Uj --+ ej as € --+ O.
Now, the linear system

has the positive solution

for 1 < i < n - j;

for n - j + 1 ~ i < n.

n

I f3jej = Y
;=1

(f3l , f32 ,,,., f3n) = (Yn - Yn-l , Yn-l - Yn-2 ,..., Y2 - Yl , Yl)'



4 RUBINSTEIN

By continuity, it follows that for sufficiently small € = €(y), the linear
system (3) has a positive solution (aI' a2 , ... , an). This concludes the proof.

Theorem B is, of course, a direct consequence of Theorem A.
We shall mention, now, a few consequences of the previous results.

COROLLARY 1. Let J = [xo , Yo] (0 ~ Xo < Yo ~ 1, Xo + Yo < 1). For
every positive number M there exists a polynomial P(x)(=to 0) which is non
negative for all x such that

f P(x) dx = M f P(x) dx.
J [O,l]-J

Proof Let P(x) = Q'(x), where Q(x) is a polynomial as in Theorem A,
satisfying

Q(O) = 0,
8

Q(xo) = M + I '
M+8

Q(yo) = M + 1 ' Q(1) = I,

with °< 8 < I if X o > 0, Yo < 1; 8 = °if X o = °and 8 = 1 if Yo = I.
We deduce that

f
J

P(x) dx = Q(yo) - Q(xo) = M ~ I

and

M f P(x) dx = M[Q(xo) - Q(O) + Q(l) - Q(yo)] = M~ I
[O.l]-J

Corollary 1 provides an elementary proof of the well-known

COROLLARY 2. Let f(x) be a bounded summable function on the interval
[0, 1], such that

rxkf(x) dx = 0,
o

for k = 0, 1,2,....

Thenf(x) vanishes at every point of continuity.

Proof Assume that If(x) I < M for x E [0, 1]. Let Xl' 0 ~ Xl ~ 1,
be a point of continuity of f(x). If f(XI) -:1= °then we may assume that
f(x) > TJ > °in some interval J as in Corollary 1, containing Xl .

By Corollary 1, there exists a polynomial P(x)(=to 0) such that

f P(x) dx = M f P(x) dx.
J TJ [O,l]-J
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In addition, we have

J f(x) P(X) dx > TJ J P(X) dx = M J P(X) dx
J J [O.I]-J

and

IJ f(x) P(X) dx I< M J P(X) dx.
[0.1]-1 [O.I]-J

We obtain a contradiction, since f~f(x) P(x) dx = °implies that

IJ f(x) P(x) dx I = Jf(x) P(x) dx.
[0.1]-1 J

This completes the proof. In particular, if f(x) is Riemann integrable, then
it vanishes almost everywhere in the interval [0, I].

It is interesting to relate Theorem A to a result which follows from a
theorem due to Yamabe. He proved [6], using the Weierstrass approximation
theorem, the following:

Given a continuous function g(x) on [0, I], n linear functionals tPi

(i = 1,2,... , n) on the space qo, 1] and a positive number €, there exists a
polynomial p(x) such that

max Ig(x) - p(x) I < €
O<x~l

and

<Pi[g(x)] = tPi[p(x)].

If this result is used, Theorem A (with (b) asserted only on [0, I]) can be
proved by choosing a function g(x) such that

g(x) ;:?: e > ° for °~ x ~ 1,

{l g(t) dt = Yl ,
o

k = 2,... , n,

and defining the tPi by tPi(h) = f~i h(t) dt. The theorem then follows by
Yamabe's result, with € = e12.1

Normally, in a uniform approximation process by polynomials, it is
desirable to carryover as many properties of the approximated functionf(x)
as possible.

For example, the Bernstein polynomials

1 This proof and the reference to Yamabe's paper were suggested by the referee, to
whom I am greatly indebted.
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are strictly increasing on the interval [0, 1], if f(x) is also. A similar result
holds [3] if f(x) is starlike in [0, 1] (that is, f(rxx) ~ rxf(x) for rx E [0, 1],
x E [0, 1]). It would be, therefore, of interest to study properties which are
inherited from a monotonic function to monotonic polynomials
approximating it.

In the case of a three-point interpolation, one can actually construct
a polynomial of the type of Q(x) of Theorem A. Indeed, if °< a < b,°< p < 1, one verifies easily that the polynomial

R(x) = c[1 - xn - (1 - x)n] + bx",

where
a - bpn

c = -=---=---+.--~-=-1 - p" - (l - p)" '

is strictly increasing and satisfies P(O) = 0, P(P) = a, and P(l) = b, provided
n is a sufficiently large odd positive integer. It is enough to satisfy the
conditions

( Q)l/n (Q)l/n
l-l- b <P<b'

since this implies that °< c < b. Thus, the minimal admissible n depends
only on p and the ratio a/b. It would be interesting to estimate the minimal
degree of a Q(x) satisfying (a) and (b) of Theorem A.
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